Simcenter电驱动系统解决方案
电驱动系统开发涉及到诸多设计、验证及其相互选代的过程。通常来讲,一个正向研发过程首先从整车需求指标分解开始,明确电驱动系统的各部件的设计目标,然后进行部件级详细设计,其中包括:电磁方案以及动力性能设计、传动方案设计、电驱动系统散热设计及热管理策略开发、电驱动系统的NVH设计及优化等。待各部件性能开发完毕,工程师利用多学科系统仿真平台将表征电驱动系统各项性能的模型进行集成,同时完成整车层面的设计指标验证。在这个过程中,工程师需要不断对各部件的详细设计进行局部优化调整,以此使整车综合性能表现达到平衡。与此同时,为缩短产品研发周期,控制工程师利用前期建立的电驱动系统部件级模型开始控制策略的虚拟标定工作,包括:以能耗最低为目标的基波电流幅值相位标定、以输出扭矩波动最小为目标的谐波注入电流幅值相位标定等。
上述性能开发工作完成后,电驱动系统研发进入样件试制阶段。软件工程究成控制策略的程序实现、硬件电路完成制版、元件焊接与基本功能调试、电机本体生产制造完成并与电驱动系统一体化集成结构完成装配。
测试阶段根据实际验证工作需要,依次完成软件在环测试、硬件在环测试、台架测试与实车测试。工程师借助于开发阶段所搭建的系统或部件级详细模型,完成电驱动系统虚实结合的测试过程。在此过程中,数字孪生中的实物部分将逐渐替代虚拟模型部分,从而使测试环境越来越接近于系统真实运行环境。借助于数字率生技术,电驱动系统的开发周期大幅摩缩短,同时得益于虚拟仿真技术的应用,使得设计缺陷尽可能地暴露在早期验证阶段,从而大大降低了电驱动系统的研发成本。
展开剩余82%电驱系统架构创成设计及评估
电驱系统架构差异是系统性能差异关键所在,不同系统架构对于所设计产品的成本、性能之间的差异起着决定性的作用,不同驱动方式形式的续航里程、系统可靠性也会有本质的差别,组成更少的集中式电驱系统更容易获得更高的可靠性,轮边电机或者轮毂电机式驱动方式的电动汽车具有更高的加速性能,但同时成本也会更高,这些重要性能的决定因素就是系统架构。不同架构的总体系统设计也决定着子系统与零部件的设计,例如不同的驱动形式决定着不同的电驱动系统的拓扑结构,因此合理的系统架构规划有利于充分利用电动车|混动车的零部件特点和整车总体优势,例如成员舱空间、车身碰撞性能、更好的整车尺寸等,此外对于零部件选型和设计也有很强指导意义。
在汽车设计概念阶段,工程师通常根据直觉或以往设计经验进行总体架构方案设计和整车性能指标决策,这将导致设计固化从而限制架构方案的创新和寻求优化方案的可能性,整车性能参数被设定后由下游开发团队进行子系统性能标定,随着越来越多的关键指标的确定,设计固化的问题也越来越明显,一旦一种或局限的几种架构方案被设定,我们可以通过仿真进行设计优化,但此时己为时已晚,我们无法获悉是否存在更好的架构方案。
面对上述问题,我们需要一个能够帮助工程师进行快速的架构方案创成和评估的工具来进行xEV架构和配置方案的探索和寻优,Simcenter studio 是Simcenter 产品组合中的一个应用,用于在早期概念阶段生成和评估系统架构。该软件包含有专利技术,以便使工程师和数据科学家创建新频的、拓扑上不同的系统架构。Simcenter Studio 还将系统仿真、控制方法、以及建立在最先进的机器学习和科学计算堆栈之上强化学习合并在一起,以便对数百种此类架构进行自动仿真和评估。这种方法允许工程师和数据科学家在计算笔记本中创建用户定义的程序,用于创成式工程。
免责声明:我们尊重知识产权、数据隐私,只做内容的收集、整理及分享,报告内容来源于网络,报告版权归原撰写发布机构所有,通过公开合法渠道获得,如涉及侵权,请及时联系我们删除,如对报告内容存疑,请与撰写、发布机构联系
发布于:广东省